Abstract
This paper presents an integrated power electronics module with a vapor chamber (VC) acting as a heat spreader to transfer the heat from the insulated gate bipolar transistor (IGBT) module to the base of the heat-sink. The novel VC integrated in a power module instead of a metal substrate is proposed. Compared with a conventional metal heat spreader, the VC significantly diffuses the concentrated heat source to a larger condensing area. The experimental results indicate that the VC based heat-sink will maintain the IGBT junction temperature 20°C cooler than a non-VC based heat-sink with high power density. The junction-to-case thermal resistance of the power module based on the VC is about 50% less than that of the power module based on a copper substrate with the same weight. The chip overshooting temperature of the copper substrate module with the same weight goes beyond 10°C against the junction temperature of the VC module at a given impulse power of 225 W. Consequently, thanks to a longer time duration to reach the same temperature, a power surge for the chip can be avoided and the ability to resist thermal impact during the VC module startup can be improved as well. The investigation shows that the VC power module is an excellent candidate for the original metal substrate, especially for an integrated power module with high power density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.