Abstract
We consider the damped and driven Navier–Stokes system with stress free boundary conditions and the damped Euler system in a bounded domain Ω⊂R2. We show that the damped Euler system has a (strong) global attractor in H1(Ω). We also show that in the vanishing viscosity limit the global attractors of the Navier–Stokes system converge in the non-symmetric Hausdorff distance in H1(Ω) to the strong global attractor of the limiting damped Euler system (whose solutions are not necessarily unique).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.