Abstract

Batchelor (Phys. Fluids, vol. 12, 1969, p. 233) developed a theory of two-dimensional turbulence based on the assumption that the dissipation of enstrophy (mean-square vorticity) tends to a finite non-zero constant in the limit of infinite Reynolds number Re. Here, by assuming power-law spectra, including the one predicted by Batchelor's theory, we prove that the maximum dissipation of enstrophy is in fact zero in this limit. Specifically, as Re → ∞, the dissipation approaches zero no slower than (lnRe) -1/2 . The physical reason behind this result is that the decrease of viscosity enhances the production of both palinstrophy (mean-square vorticity gradients) and its dissipation - but in such a way that the net growth of palinstrophy is less rapid than the decrease of viscosity, resulting in vanishing enstrophy dissipation. This result generalizes to a rich class of quasi-geostrophic models as well as to the case of a passive tracer in layerwise-two-dimensional turbulent flows having bounded enstrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.