Abstract
Vanillic acid (VA) regulates various plant physiological and biochemical processes upon different environmental stresses to enhance their tolerance. This study aimed to evaluate the protective effect of VA on growth and physiology, including osmoprotection, and antioxidant defense systems for enhancing higher tolerance by lowering oxidative damage against water deficit stress in tomatoes (Solanum lycopersicum L. cv. BARI Tomato-16). Hydroponically grown tomato seedlings (8 d old) were pretreated with 50 µM VA for 2 days followed by water deficit stress (imposed by water withdrawal and 12% polyethylene glycol; PEG-6000) for 4 d. Drought stress inhibited the seedlings’ growth by reducing water content and photosynthetic pigments contents, alleviating oxidative stress induced by a reactive oxygen species and methylglyoxal. A significant enhancement in growth, biomass accumulation, and photosynthetic pigment content was observed in VA-pretreated stress conditions. In addition, there was an improvement in the water status and proline content, along with modulated activities of the antioxidant responses, including both non-enzymatic and enzymatic components in leaves of VA-pretreated seedlings upon the water deficit. Vanillic acid significantly reduced the reactive oxygen species generation and decreased cellular membrane damage in drought-affected tomato seedlings. Methylglyoxal detoxification was ensured to a great extent in VA-pretreated stressed tomato seedlings by strengthening the glyoxalase enzymes’ activities. Therefore, VA can be effective for protecting tomato seedlings by inducing a plant antioxidant defense and the methylglyoxal detoxification system and osmoregulation under drought stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.