Abstract

The vanadium(V) complexes bearing the aroylhydrazone Schiff base 2-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide ligand [VO(OMe)L] (1) and [Et3NH][VO2L] (2) were synthesized, characterized and supported on porous MIL-100(Fe) forming the 1@MIL-100(Fe) and 2@MIL-100(Fe) composites. The outcome of such immobilizations was assessed by several characterization techniques, namely powder X-ray diffraction, UV/Vis, FTIR, SEM-EDS, ICP and BET surface area analysis, confirming the successful heterogenization of both vanadium complexes. They were screened as catalysts towards the oxidation of toluene, under homogenous (1 and 2) and heterogeneous (1@MIL-100 and 2@MIL-100) conditions. The influence of several parameters, namely the type and amount of catalyst or oxidant, reaction time, temperature, and radical trapping, was studied. The main products obtained were benzaldehyde, benzyl alcohol and benzoic acid. Under the optimized conditions, using 1 and 2 as homogeneous catalysts, total yields of 19 and 23%, respectively, were achieved at 80 °C after 6 h. Using 1@MIL100(Fe) and 2@MIL100(Fe) composites under heterogeneous conditions, total yields up to 11% after 24 h, were achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.