Abstract

This study reports for the first time, Fe-Ti-V oxide and Cu-sulphide mineralization in Paleoproterozoic Mangikhuta basalt Formation, central Indian craton. Electron microprobe and laser ablation analyses of Fe-oxides reveal high FeO (45–69 wt %), TiO2 (19–53 wt %), V (1860 - 4990 ppm), Zr (394–3130 ppm), Nb (55–285 ppm) and Zn (324–668 ppm). Interelemental relationships of Fe-oxides reveal their magmatic origin. High concentration of lithophile elements in Fe-oxides besides V and Ni trends in incompatible element plots indicate their origin from mafic melt. High Cu content (269 and 314 ppm) in the host basalt samples along with chalcopyrite mineralization observed during ore petrography indicates sulphide saturation of Mangikhuta magma. The chondrite normalized rare earth element (REE) plots of the host rock samples are overall similar to the earlier reported Mangikhuta REE patterns, which indicates genetic relation of Fe-oxides and Cu-sulphides with Mangikhuta volcanism. Fe-oxide and Cu-sulphide mineralization in Mangikhuta basalt is related to hydrous and oxygen rich arc related mafic melt intrusion into the Khairagarh back arc basin. Sulphide saturation in Mangikhuta basalt was initiated due to precipitation of Fe-oxides from the evolved melt whereas addition of fresh batch of hydrous and oxygen rich melt derived from the arc-related mantle source increased oxygen fugacity of residual melt that resulted in alternate phases of high oxygen and Sulphur fugacity and precipitation of Fe-oxide and Cu-sulphides from the melt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call