Abstract

The active electronic states in 1T-MoS2 are highly desirable for catalyzing polysulfides conversion. However, stable 1T-MoS2 is difficult to produce using common approaches. Herein, V uniformly doped in-plane 1T-2H heterostructured MoS2 nanosheets (V-MoS2) are prepared by a facile hydrothermal method with a polyoxometalate precursor containing periodic Mo and V atomic arrangement. The doping of V induces the phase transition from semiconducting 2H-MoS2 to metallic 1T-MoS2 and stabilizes the resulted 1T phase. Importantly, the incorporation of V not only modifies the surface electronic property of MoS2, enhancing the active site density, but also improves the adsorption of polysulfides and the catalytic efficiency for sulfur redox reactions. With these advantages, the Li-S batteries using V-MoS2 electrocatalyst achieve accelerated reaction kinetics and superior electrochemical performance. When the S loading of the cathode is 5.41 mg cm−2, a favorable discharge capacity of 4.98 mAh cm−2 is obtained with satisfying cycle stability. This work provides an efficient atomic engineering approach for the design of high performance electrocatalyst for Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.