Abstract

Density functional theory investigations were conducted in order to study the effects of the adsorption of thiophene on the structural and electronic properties of TiO2 anatase nanoparticles. The ability of pristine and N-doped TiO2 anatase nanoparticles to recognize toxic thiophene was surveyed in detail. It was found that thiophene molecule is chemisorbed on the N-doped anatase nanoparticles in S site geometries with large adsorption energy and small distance. By including van der Waals (vdW) interactions between thiophene molecule and TiO2, we found that the adsorption on the N-doped TiO2 is energetically more favorable than the adsorption on the pristine one, suggesting that the nitrogen doping can energetically facilitate the thiophene adsorption on the N-doped nanoparticle. The order of adsorption energy is Parallel(S site)>Perpendicular(S site)>Perpendicular (H site). The interaction between thiophene and N-doped TiO2 can induce substantial variations in the HOMO/LUMO molecular orbitals of the nanoparticle, changing its electrical conductivity, which is helpful for designing the novel sensor and remover devices. Charge analysis based on Mulliken charges reveals that charge is transferred from thiophene molecule to TiO2 nanoparticle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.