Abstract

AbstractMagnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe‐A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field (IMF) quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe‐A is located outside the plasmapause at postmidnight and near the equator (magnetic latitude (MLAT) ~ −3°). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe‐A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT ~ 12°). Event 3 is characterized by amplification of a preexisting EMIC wave by a sharp Pdyn pulse impact while Van Allen Probe‐A is located outside the plasmapause at noon and rather away from the equator (MLAT ~ −15°). These three events represent various situations where EMIC waves can be triggered by Pdyn increases. Several common features are also found among the three events. (i) The strongest wave is found just above the He+ gyrofrequency. (ii) The waves are nearly linearly polarized with a rather oblique propagation direction (~28° to ~39° on average). (iii) The proton fluxes increase in immediate response to the Pdyn impact, most significantly in tens of keV energy, corresponding to the proton resonant energy. (iv) The temperature anisotropy with T⊥ > T|| is seen in the resonant energy for all the events, although its increase by the Pdyn impact is not necessarily always significant. The last two points (iii) and (iv) may imply that in addition to the temperature anisotropy, the increase of the resonant protons must have played a critical role in triggering the EMIC waves by the enhanced Pdyn impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.