Abstract
AbstractIn this paper, we test whether time periods with hot proton temperature anisotropy are associated with electromagnetic ion cyclotron (EMIC) waves and whether the plasma conditions during the observed waves satisfy the linear theory threshold condition. We identify 865 events observed by the Composition Distribution Function instrument onboard Cluster spacecraft 4 during 1 January 2001 to 1 January 2011 that exhibit a positive temperature anisotropy (Ahp = T⊥ h/T∥ h − 1) in the 10–40 keV protons. The events occur over an L range from 4 to 10 in all magnetic local times and at magnetic latitudes (MLATs) within ±50°. Of these hot proton temperature anisotropy (HPTA) events, only 68 events have electromagnetic ion cyclotron (EMIC) waves. In these 68 HPTA events, for those at 3.8<L ≤ 5 and |MLAT| ≤ 10°, the EMIC waves with powers >1.0 nT2/Hz mainly appear in the region with fEMIC/fH,eq < 0.8. Two stop bands are present, one near the region with fEMIC/fH,eq ≈ 0.33, the other in the region with 0.8 < fEMIC/fH,eq < 0.9. Most of the EMIC waves in the He, H, and >H bands satisfy Ahp/(Ahp + 1) > fEMIC/fH,lo, Ahp/(Ahp + 1) > 0.45 × fEMIC/fH,lo, and Ahp/(Ahp + 1) < 0.45 × fEMIC/fH,lo. fEMIC, fH,eq, and fH,lo are the EMIC wave frequency, the magnetic equatorial, and the local proton gyrofrequencies. We also find that the EMIC waves predominantly occur with Ahp > 0.25. By testing a threshold equation for the EMIC instability based on linear theory, we find that for EMIC waves with |MLAT| ≤ 10° in the He, H, and >H bands, the percentages that satisfy the predicted conditions for wave growth by the threshold equation are 15.2%, 24.6%, and 25.6%. For the EMIC waves with |MLAT| > 10° the percentages that satisfy the wave growth predicted conditions are only 2.8%, 2.6%, and 0.0%. Finally, possible reasons for the low forecast accuracies of EMIC waves are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.