Abstract
In this paper, we develop a new forecasting algorithm for value-at-risk (VaR) based on ARMA–GARCH (autoregressive moving average–generalized autoregressive conditional heteroskedastic) models whose innovations follow a Gaussian mixture distribution. For the parameter estimation, we employ the conditional least squares and quasi-maximum-likelihood estimator (QMLE) for ARMA and GARCH parameters, respectively. In particular, Gaussian mixture parameters are estimated based on the residuals obtained from the QMLE of GARCH parameters. Our algorithm provides a handy methodology, spending much less time in calculation than the existing resampling and bias-correction method developed in Hartz et al. [Accurate value-at-risk forecasting based on the normal-GARCH model, Comput. Stat. Data Anal. 50 (2006), pp. 3032–3052]. Through a simulation study and a real-data analysis, it is shown that our method provides an accurate VaR prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have