Abstract
Our aim was to analyze the diagnostic performance of shear wave elastography (SWE) in the diagnosis of gouty arthritis (GA) and non-gouty arthritis (non-GA). Thirty-nine patients in the GA group and 55 patients in the non-GA group were included in the study. Based on the echo intensity of the joint lesions, the GA group was subdivided into hypo-echoic GA, slightly hyper-echoic GA and hyper-echoic GA subgroups. Quantitative SWE features were evaluated and receiver operating characteristic analysis was performed. On the basis of the study, the elastic modulus (Emax), mean elastic modulus (Emean), minimum elastic modulus (Emin) and elastic modulus standard deviation (ESD) were significantly higher in the GA group than in the non-GA group and were highest in the hyper-echoic GA subgroup (p < 0.01 for all). Emin, Emean and Emax were significantly higher in the hyper-echoic GA subgroup than in the hypo-echoic GA subgroup and non-GA group (p < 0.001 for all), and ESD was significantly higher in the hyper-echoic GA subgroup than in the non-GA group (p = 0.001). Emin, Emean, Emax and ESD were higher in the hypo-echoic GA subgroup than in the non-GA group, and the differences were significant (p < 0.001 for all). Based on the hypo-echoic GA subgroup and non-GA group, areas under the receiver operating characteristic curves for the prediction of GA were 0.749 for Emin, 0.877 for Emean, 0.896 for Emax and 0.886 for ESD, with optimal cutoff values of 29.40 kPa for Emin, 45.35 kPa for Emean, 67.54 kPa for Emax and 7.85 kPa for ESD. Our results indicate that SWE can differentially diagnose GA and non-GA, especially when the ultrasound manifestations are not typical.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have