Abstract

Objective: To investigate the value of radiomics models based on magnetic resonance imaging (MRI) diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps in distinguishing benign and malignant thyroid nodules. Methods: A cross-sectional study. Clinical data of 148 thyroid nodules (50 benign, 98 malignant) from 140 patients who underwent thyroid MRI examination in Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences between January 2019 and December 2022 were retrospectively analyzed. The nodules were used as the study units, and a leave-one-out method was used to randomly divide the nodules into a training set and a test set at a 7∶3 ratio. Region of interest was segmented and radiomics features were extracted from the DWI and ADC images. In the training set, feature selection was performed using inter-observer agreement analysis, U-test, least absolute shrinkage and selection operator algorithm, and correlation analysis. Four classifiers, including support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN) and logistic regression (LR) were used to build models with the selected features, including the DWI models, ADC models, and combined models. The models were independently tested in the test set. The performance of the radiomics models in distinguishing benign and malignant thyroid nodules was evaluated using the receiver operating characteristic (ROC) curve, with pathological results as the gold standard. Results: Of the 140 patients, there were 40 males and 100 females, with a mean age of (38.4±12.2) years. After feature selection, 11 DWI features and 11 ADC features were used to build the models. In the training set, the AUC values of the combined models were higher than those of the corresponding DWI and ADC models. In the test set, the SVM combined model showed the best predictive performance, with an AUC of 0.873 (95%CI:0.740-0.954), accuracy of 75.6%, sensitivity of 46.7%, specificity of 90.0%, positive predictive value (PPV) of 70.0% and negative predictive value (NPV) of 77.1%, while the RF combined model had an AUC of 0.836 (95%CI:0.695-0.929), accuracy of 77.8%, sensitivity of 40.0%, specificity of 96.7%, PPV of 85.7% and NPV of 76.3%, the KNN combined model had an AUC of 0.832 (95%CI:0.691-0.927), accuracy of 77.8%, sensitivity of 33.3%, specificity of 100%, PPV of 100% and NPV of 75.0%, the LR combined model had an AUC of 0.813 (95%CI:0.669-0.914), accuracy of 77.8%, sensitivity of 60.0%, specificity of 86.7%, PPV of 69.2% and NPV of 81.3%. Conclusions: Radiomics models based on DWI and ADC image features can effectively distinguish benign and malignant thyroid nodules. The SVM combined model had the best prediction performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call