Abstract

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of finitely many scenarios. The problem is a non-convex stochastic optimization problem and can be reformulated as a difference of convex (D.C.) program. We apply the difference of convex algorithm (DCA) to solve the problem. Numerical results comparing the solutions found by the DCA to the respective global optima for relatively small problems as well as numerical studies for large real-life problems are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.