Abstract

The special importance of Difference of Convex (DC) functions programming has been recognized in recent studies on nonconvex optimization problems. In this work, a class of DC programming derived from the portfolio selection problems is studied. The most popular method applied to solve the problem is the Branch‐and‐Bound (B&B) algorithm. However, “the curse of dimensionality” will affect the performance of the B&B algorithm. DC Algorithm (DCA) is an efficient method to get a local optimal solution. It has been applied to many practical problems, especially for large‐scale problems. A B&B‐DCA algorithm is proposed by embedding DCA into the B&B algorithms, the new algorithm improves the computational performance and obtains a global optimal solution. Computational results show that the proposed B&B‐DCA algorithm has the superiority of the branch number and computational time than general B&B. The nice features of DCA (inexpensiveness, reliability, robustness, globality of computed solutions, etc.) provide crucial support to the combined B&B‐DCA for accelerating the convergence of B&B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.