Abstract
There are several classical characterisations of the valuative dimension of a commutative ring. Constructive versions of this dimension have been given and proven to be equivalent to the classical notion within classical mathematics, and they can be used for the usual examples of commutative rings. To the contrary of the classical versions, the constructive versions have a clear computational content. This paper investigates the computational relationship between three possible constructive definitions of the valuative dimension of a commutative ring. In doing so, it proves these constructive versions to be equivalent within constructive mathematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.