Abstract
Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The angiotensin II receptor blocker, valsartan, lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with valsartan (320 mg/d) or conventional triple therapy (reserpine+hydralazine+hydrochlorothiazide) for 4 weeks after 6 weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function, and myocardial oxygenation and microcirculation were assessed by multidetector computer tomography, blood oxygen level-dependent MRI, and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.