Abstract
Valproic acid (VPA) is an effective antiepileptic drug that may induce progressive microvesicular steatosis. The impairment of mitochondrial function may be an important metabolic effect of VPA treatment with potential adverse consequences. To investigate the influence of VPA on the activity of GTP- and ATP-specific succinate:CoA ligases (G-SUCL and A-SUCL). The GTP- and ATP-specific SUCL activities were measured in human fibroblasts in the reverse direction, i.e. the formation of succinyl-CoA. These were assessed at different concentrations of succinate in the presence of VPA, valproyl-CoA and zinc chloride, an established inhibitor of the enzymes. Activities were measured using an optimized HPLC procedure. Valproyl-CoA (1 mM) inhibited the activity of A-SUCL and G-SUCL by 45-55% and 25-50%, respectively. VPA (1 mM) had no influence on the activity of the two enzymes. Valproyl-CoA appears to affect the activity of SUCL, especially with the ATP-specific enzyme. Considering the key role of SUCL in the Krebs cycle, interference with its activity might impair the cellular energy status. Moreover, A-SUCL is bound to the nucleoside diphosphate kinase (NDPK), which is responsible for the mitochondrial (deoxy)nucleotide synthesis. An inhibition of A-SUCL might influence the activity of NDPK inducing an imbalance of nucleotides in the mitochondria and eventually mitochondrial DNA depletion. This may account for the potential liver failure associated with valproate therapy, reported in patients with deficiencies within the mitochondrial DNA replicase system such as polymerase gamma 1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have