Abstract

Squalene monooxygenase (SM) is an essential rate-limiting enzyme in cholesterol synthesis. SM degradation is accelerated by excess cholesterol, and this requires the first 100 amino acids of SM (SM N100). This process is part of a protein quality control pathway called endoplasmic reticulum-associated degradation (ERAD). In ERAD, SM is ubiquitinated by MARCH6, an E3 ubiquitin ligase located in the endoplasmic reticulum (ER). However, several details of the ERAD process for SM remain elusive, such as the extraction mechanism from the ER membrane. Here, we used SM N100 fused to GFP (SM N100-GFP) as a model degron to investigate the extraction process of SM in ERAD. We showed that valosin-containing protein (VCP) is important for the cholesterol-accelerated degradation of SM N100-GFP and SM. In addition, we revealed that VCP acts following ubiquitination of SM N100-GFP by MARCH6. We demonstrated that the amphipathic helix (Gln62-Leu73) of SM N100-GFP is critical for regulation by VCP and MARCH6. Replacing this amphipathic helix with hydrophobic re-entrant loops promoted degradation in a VCP-dependent manner. Finally, we showed that inhibiting VCP increases cellular squalene and cholesterol levels, indicating a functional consequence for VCP in regulating the cholesterol synthesis pathway. Collectively, we established VCP plays a key role in ERAD that contributes to the cholesterol-mediated regulation of SM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.