Abstract
This paper proposes the use of monovalent selective electrodialysis technology to concentrate the valuable sodium chloride (NaCl) component present in seawater reverse osmosis (SWRO) brine for direct utilization in the chlor-alkali industry. To enhance monovalent selectivity, a polyamide selective layer was fabricated on commercial ion exchange membranes (IEMs) through interfacial polymerization (IP) of piperazine (PIP) and 1,3,5-Benzenetricarbonyl chloride (TMC). The IP-modified IEMs were characterized using various techniques to investigate changes in chemical structure, morphology, and surface charge. Ion chromatography (IC) analysis showed that the divalent rejection rate was more than 90% for IP-modified IEMs, compared to less than 65% for commercial IEMs. Electrodialysis results demonstrated that the SWRO brine was successfully concentrated to 14.9 g/L NaCl at a power consumption rate of 3.041 kWh/kg, indicating the advantageous performance of the IP-modified IEMs. Overall, the proposed monovalent selective electrodialysis technology using IP-modified IEMs has the potential to provide a sustainable solution for the direct utilization of NaCl in the chlor-alkali industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.