Abstract

Orange peels can serve as a cost-effective raw material for the production of lactic acid. Indeed, given their high concentration of carbohydrates and low content of lignin, they represent an important source of fermentable sugars, recoverable after a hydrolytic step. In the present article, the fermented solid, obtained after 5 days of Aspergillus awamori growth, was used as the only source of enzymes, mainly composed of xylanase (40.6IU g-1 of dried washed orange peels) and exo-polygalacturonase (16.3IU g-1 of dried washed orange peels) activities. After the hydrolysis, the highest concentration of reducing sugars (24.4g L-1 ) was achieved with 20% fermented and 80% non-fermented orange peels. The hydrolysate was fermented with three lactic acid bacteria strains (Lacticaseibacillus casei 2246 and 2240 and Lacticaseibacillus rhamnosus 1019) which demonstrated good growth ability. The yeast extract supplementation increased the lactic acid production rate and yield. Overall, L. casei 2246 produced the highest concentration of lactic acid in mono-culture. To the best of our knowledge this is the first study exploiting orange peels as low-cost raw material for the production of lactic acid avoiding the employment of commercial enzymes. The enzymes necessary for the hydrolyses were directly produced during A. awamori fermentation and the reducing sugars obtained were fermented for lactic acid production. Despite this preliminary work carried out to study the feasibility of this approach, the concentrations of reducing sugars and lactic acid produced were encouraging, leaving open the possibility of other studies for the optimization of the strategy proposed here. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call