Abstract
Detailed experiments were conducted using a laboratory-scale spray dryer under controlled conditions to investigate the effects of highly hygroscopic additives on the performance of hydrated lime (Ca(OH)2) in spray dry scrubbing (SDS) of sulfur dioxide (SO2). The experiment involved the preparation of hydrated lime sorbent from industrial brine sludge waste (IBSW) as the starting material. The evaluated additives included sodium hydroxide, ammonium nitrate, ammonium chloride, sodium chloride, and urea. The additives were chosen based on their hygroscopicity, as it is understood that the degree of desulfurization and sorbent conversion in an SDS is significantly enhanced in the prolonged liquid phase. Experiments were conducted at a constant inlet flue gas temperature of 140°C, sorbent particle size of -45μm, while the calcium to sulfur (Ca:S) ratio was varied in the range of 1.0 - 2.5. Slurry with 10 wt.% Ca(OH)2 was used while varying the additive concentration from 2 to 8 wt.%. The experimental findings revealed that all the investigated additives, except urea, promoted the removal efficiency of SO2 above baseline. Sodium hydroxide was the best-performing additive achieving 92.06% SO2 removal efficiency and a calcium conversion of 54.59%. Fourier-transform infrared spectroscopy (FTIR) analysis showed traces of additives present in the sulfation products. Similarly, X-Ray diffraction (XRD) analysis on the final product showed the presence of desulfurization products and the respective additive compounds. Scanning electron microscopy (SEM) depicted reaction products particles as course, irregular, and deformed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.