Abstract

In this study, dissolution of pristine alkali lignin into ethylene glycol, followed by addition of different acidic conditions (HCl, H2SO4, and H3PO4 at different pH) has been considered as a simple method to prepare high yield lignin nanoparticles (LNP). Field emission scanning electron microscopy (FESEM), Zeta potential, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA) have been utilized to determine the influence of the precipitation procedures on particle size, Zeta potential, molecular weight, and thermal stability of final obtained LNP. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) were also considered to investigate the influence of lignin chemical structures and composition on its antioxidative and antimicrobial behaviors. Results from DPPH (1,1-diphenyl-2-picryl-hydrazyl) activity revealed the antioxidant response of LNP aqueous solutions, whereas results from antimicrobial tests confirmed LNP ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call