Abstract
Physical properties reflecting the valley asymmetry of Landau levels in a biased bilayer graphene under a magnetic field are discussed. Within the 4-band continuum model with a Hartree-corrected self-consistent gap and finite damping factor we predict the appearance of anomalous steps in quantized Hall conductivity due to the degeneracy lifting of Landau levels. Moreover, the valley symmetry breaking effect appears as a nonsemiclassical de Haas-van Alphen effect where the reduction of the oscillation period to half cannot be accounted for through quasiclassical quantization of the orbits in reciprocal space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.