Abstract
We present an analysis on the determination of the energy gap in biased bilayer graphene using tunneling measurements, report our experimental results obtained from planar tunneling spectroscopy, and compare them with those from electrical transport measurements. Bilayer graphene flakes were prepared by exfoliating from bulk graphite onto SiO2 thermally grown on a doped Si substrate. Due to the low carrier density of bilayer graphene, the Fermi level and electronic structure are expected to be highly sensitive to tunnel bias-induced charging, which is neglected in traditional tunnel junctions. We found that the tunneling signal generally exhibited a “V”-shaped tunneling conductance background that did not shift with back gate voltage, possibly due to a two-step tunneling process. We observed a tunable suppression in the tunneling conductance that follows theoretical predictions for a band gap in biased bilayer graphene. We explore the evolution of the band gap by tuning the electric field and charge carrier density produced by the tunneling bias and back gate, and compare experimental results with numerical simulations. Finally, we compare these findings with transport measurements of top- and bottom-gated bilayer graphene field effect transistors featuring similar gate dielectrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.