Abstract

ABSTRACTIn seismic modelling, a stack of thin layers is often replaced by an effective equivalent anisotropic homogeneous slab. For waves with finite wavelength, this is an approximation, and the error thus introduced can be quantified by considering the relative error in the phase velocity between the layer stack and the effective medium. For periodic layering, the relative phase‐velocity error can be expressed in closed form as a function of wavelength, reflection coefficients and layer thicknesses. By comparing the relative phase‐velocity error with laboratory measurements and numerical simulations, we find that the difference in seismic response between a periodic layer stack and an equivalent effective medium depends not only on wavelength, but it also depends significantly on reflection coefficients and the ratio between layer thicknesses. For a 1% relative error in the phase velocity, and if all layers have the same thickness measured in vertical traveltime, we find that the wavelength must be larger than approximately three times the layer period for a reflection coefficient of 0.1, but this increases to 13 times the layer period for a reflection coefficient of 0.9, which is highly unrealistic in a geological setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.