Abstract

Determining the size of a network dynamical system from the time series of some accessible units is a critical problem in network science. Recent work by Haehne etal. [Phys. Rev. Lett. 122, 158301 (2019).PRLTAO0031-900710.1103/PhysRevLett.122.158301] has presented a model-free approach to address this problem, by studying the rank of a detection matrix that collates sampled time series of perceptible nodes from independent experiments. Here, we unveil a profound connection between the rank of the detection matrix and the control-theoretic notion of observability, upon which we conclude when and how it is feasible to exactly infer the size of a network dynamical system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.