Abstract
Network science has been a promising tool for characterizing and understanding complex systems. A challenging problem in network science is to uncover the community structure of the network. Community structure generally presents the partition of the nodes in the network into several groups based on various structural properties or dynamic behavior. In this paper, we analyze the community structure of Chinese airport network based on Stochastic Block Models (SBM). Different from exisiting studies, the Chinese Airport Delay Correlation Network (CADCN) is constructed with airports as nodes and the correlations between hourly delay time series of airport pairs as edges. To analyze the temporal patterns of community structures, we employ spectral clustering method and classify Chinese airports into 6 different communities. Airports within each community have closer relationships to each other on the delay propagation. A similar investigation to the traditional Chinese airport network (CAN) is carried out based on SBM as well. By comparing the results of two networks, we find that the CADCN has the advantage in revealing the implicit delay correlation than the directed flights connection between airports. Our findings have potential meanings to understand the spread of flight delays and to develop relevant management and control strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.