Abstract
Clouds and the Earth's Radiant Energy system (CERES) sensors provide accurate measurements for the long-term monitoring of the Earth's radiation budget components. The three scanning thermistor bolometer sensors on CERES measure broadband radiances in the shortwave (0.3 to 5.0 micrometer), total (0.3 to >100 micrometer) and in 8 - 12 micrometer water vapor window regions. Currently four of the CERES instruments (Flight Models 1 through 4 [FM1 - FM4]) are flying aboard EOS Terra and Aqua platforms with two instruments aboard each spacecraft. The sensor calibrations are performed with onboard blackbody sources and a tungsten lamp as well as a solar diffuser plate known as the Mirror Attenuator Mosaic (MAM). The calibration results collectively depict the ground to orbit shifts and the on-orbit drifts in the sensor reponses. Deep convective clouds and tropical ocean are used as validation targets to understand the sensors' stability on-orbit. With two CERES instruments on the same platform, comparison of measurements from similar sensors viewing the same geolocation are performed. The different calibration and validation studies performed on CERES bring to light the radiometric gain and spectral variation of the sensors from pre and post launch. This paper discusses briefly the contribution of each calibration and validation study in understanding CERES sensors' behavior. It also shows the results from these studies which enabled to correct the data products with a calibration stability of better than 0.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.