Abstract
The formation of crystalline silicon nanoparticles by homogeneous gas-phase reactions as a direct way to produce high-purity raw material is applied. For this purpose, a microwave-assisted plasma reactor is used. Goal of this paper is to show the scalability of our process technology from laboratory scale to pilot plant scale while maintaining the particle characteristics. This is demonstrated by producing and analyzing silicon nanoparticles during long-term synthesis in a pilot-scale microwave plasma reactor over a period of six hours. The focus is on a high production rate in conjunction with consistent particle characteristics. A continuous production of the mostly spherical crystalline silicon particles with a count median diameter (CMD) of 23.4 nm and a geometric standard deviation of 1.5 is shown using TEM analysis. The stability of the synthesis process is monitored by means of regular sampling and analyzing batch samples extracted from the process every 30 min. Here it is shown that the CMD varies statistically between 21 and 26 nm. Moreover, the decomposition rate of the precursor was determined to be 99%, while the energy supply remained constant. A constant production rate of about 200 g∙h−1 is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.