Abstract
This study evaluates the accuracy of total ozone column derived from Ozone Monitoring Instruments (OMI) with two algorithms: OMI Total Ozone Mapping Spectrometer (OMI-TOMS) and OMI Differential Optical Absorption Spectroscopy (OMI-DOAS), compared to ground-based Brewer and Dobson spectrophotometers located at eight China stations from July 2009 to December 2013, including Xianghe, Kunming, Mt.Waliguan, Lhasa, Taipei, Chengkung, Cape D'Aguilar and Longfengshan. Results showed that the agreement between OMI ozone data and ground-based measurements is excellent. Total ozone columns from both OMI-TOMS and OMI-DOAS data are on average about 1.5% lower than ground-based data. For both OMI ozone data products the SZA dependence of the mean relative differences (RD) between satellite data and the ground-based data is relative obvious when the SZA is larger than 50°. Similar to the SZA, the satellite view zenith angle (VZA) dependence of the mean relative differences (RD) between satellite and ground is relatively markedly when the VZA is smaller than 10° in eight stations. Finally, the dependence of the mean relative differences (RD) (-4.28% to 0.818%) between OMI-DOAS data and ground-based data for the total ozone column is remarkable. While for OMI-TOMS data the dependence is not obvious (the RD value varies from -3.30% to -0.676%).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have