Abstract

The Isis-3D computational fluid dynamics/radiation heat transfer computer code was developed to simulate heat transfer from large fires to engulfed packages for transportation risk studies. These studies require accurate estimates of the total heat transfer to an object and the general characteristics of the object temperature distribution for a variety of fire environments. Since risk studies require multiple simulations, analysis tools must be rapid as well as accurate. In order to meet these needs Isis-3D employs fuel evaporation reaction rate and radiation heat transfer models that allow it to accurately model large-fire heat transfer even when relatively coarse computational grids are employed. Reaction rate and soot radiation model parameters in Isis-3D have been selected based on experimental data. In this work, Isis-3D calculations were performed to simulate the conditions of three experiments that measured the temperature response of a 4.66 m diameter culvert pipe located at the leeward edge of 18.9 m and 9.45 m diameter pool fires in crosswinds with average speeds of 2.0, 4.6, and 9.5 m/s. Isis-3D accurately calculated the time-dependent temperatures in all three experiments. Accelerated simulations were performed in which the pipe specific heat was reduced compared to the measured value by a factor of four. This artificially increased the speed at which the pipe temperature rose and allowed the simulated fire duration to be reduced by a factor of four. A 700 sec fire with moderately unsteady wind conditions was accurately simulated in 10 hours on a standard workstation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call