Abstract

Risk assessment studies for hazardous material packages require fire response prediction tools that are both accurate and rapid. This article describes the theoretically based, semiempirical reaction chemistry and radiation heat transfer models for large, optically dense pool fires incorporated in the ISIS-3D CFD software. The chemistry model employs four separate reactions (two produce radiating soot). The heat transfer model divides the computational domain into the diffusely radiative fire and its nonparticipating environment. ISIS-3D simulations are performed on a 6-m square JP8 pool fire experiment in which the soot temperature and volume fraction are measured. The reaction rate and soot formation parameters of the chemistry model are determined based on a comparison of the simulation with the measured data. Simulations are then performed on an experiment that measures the temperature of a pipe calorimeter suspended over the leeside of a 19-m-diameter JP8 fuel pool fire with a 9.5 m/s crosswind. The ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call