Abstract

Tropical cyclone intensity model is one of the most important components in the tropical cyclone hazard assessment. In this study, the tropical cyclone fast intensity model, which uses features of the surrounding large-scale environment to predict the evolution of the tropical cyclone intensity, is used to estimate the typhoon wind hazard in the southeast coast of China. The fast tropical cyclone intensity model that consists of an intensity dynamic equation and a moisture dynamic equation is first validated for the western North Pacific basin. The coefficients in the moisture dynamic equation are calibrated by minimizing the error between the model and the observation from the best track dataset. The model is then integrated with a typhoon track model and a parametric radial wind profile to estimate the 50-year and 100-year recurrence-interval surface wind speeds at selected sites. Three different models for the radius of the maximum wind are considered in this analysis. Accordingly, surface wind records are utilized to estimate 50-year and 100-year recurrence-interval winds. The comparison shows a good agreement between the results of the model and that of the surface observations, which validates the adequacy of the model for engineering applications in the southeast coast of China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.