Abstract

The sensitivity of membrane structures to wind loads due to their flexibility and small inertial masses raises the question of their behavior under natural wind conditions. Particularly transient wind loads could lead to dynamic amplification of the structural response. The assessment of the dynamic response of membrane structures is complex due to their special load carrying behavior, their material properties, and their distinct structural interaction with flow induced effects. Computationally intensive fluid–structure interaction simulation could overcome simplifications and limitations of existing approaches, especially small scale wind tunnel tests, and allow the assessment of all relevant structural and fluid phenomena. This paper outlines a virtual design methodology for lightweight flexible membrane structures under the impact of fluctuating wind loads and provides results on the unique validation of the method at real-scale tests of a highly flexible 29 m umbrella.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.