Abstract

Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time.

Highlights

  • An aneurysm is a localized dilation of the wall of an artery; it appears most frequently in the abdominal aorta or in the brain vasculature

  • The Fluid Structure Interaction (FSI) simulations and use linear elastic material; we investigate the effect of the method coupling, and in the FSI simulations and we investigate the effect of the method coupling using a hyperelastic Mooney-Rivlin material

  • The following results and discussions are based on aneurysm 1 due to this aneurysm that is the principal pathology in this patient

Read more

Summary

Introduction

An aneurysm is a localized dilation of the wall of an artery; it appears most frequently in the abdominal aorta or in the brain vasculature. Intracranial cerebral aneurysms are formed preferentially in abrupt curvatures or bifurcations of arteries belonging to the circle of Willis. The formation of aneurysms represents the loss of the structural integrity of the wall, but the reasons for their formation and growth are still not clear. A subarachnoid hemorrhage due to the rupture of an intracranial aneurysm is a devastating event associated with large rates of morbidity and mortality. 12% of the patients die before receiving medical attention, 40% of hospitalized patients die within one month of the hemorrhage, and more than onethird of the patients that survive are left with an important neurological deficit [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call