Abstract
Purpose To assess the performance of hardware- and software-gating technologies in terms of qualitative and quantitative characteristics of respiratory motion in positron emission tomography (PET) imaging. Materials and Methods Between 2010 and 2013, 219 fluorine 18 fluorodeoxyglucose PET examinations were performed in 116 patients for assessment of pulmonary nodules. All patients provided informed consent in this institutional review board-approved study. Acquisitions were reconstructed as respiratory-gated images by using hardware-derived respiratory triggers and software-derived signal (via an automated postprocessing method). Asymmetry was evaluated in the joint distribution of reader preference, and linear mixed models were used to evaluate differences in outcomes according to gating type. Results In blind reviews of reconstructed gated images, software was selected as superior 16.9% of the time (111 of 657 image sets; 95% confidence interval [CI]: 14.0%, 19.8%), and hardware was selected as superior 6.2% of the time (41 of 657 image sets; 95% CI: 4.4%, 8.1%). Of the image sets, 76.9% (505 of 657; 95% CI: 73.6%, 80.1%) were judged as having indistinguishable motion quality. Quantitative analysis demonstrated that the two gating strategies exhibited similar performance, and the performance of both was significantly different from that of nongated images. The mean increase ± standard deviation in lesion maximum standardized uptake value was 42.2% ± 38.9 between nongated and software-gated images, and lesion full width at half maximum values decreased by 9.9% ± 9.6. Conclusion Compared with vendor-supplied respiratory-gating hardware methods, software gating performed favorably, both qualitatively and quantitatively. Fully automated gating is a feasible approach to motion correction of PET images. (©) RSNA, 2016 Online supplemental material is available for this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.