Abstract
Objective. Proton therapy of cancer improves dose conformality to the target and sparing of surrounding healthy tissues compared to conventional photon treatments. However, proton therapy’s advantage could be even larger if proton range uncertainties were reduced. Sources of range uncertainties include computed tomography treatment planning images and variations in patient anatomy and setup. To reduce range uncertainties, we have developed a system for real-time in vivo range monitoring. The system is based on spectroscopy of prompt gamma-rays emitted through proton-nuclear interactions during irradiation. We validated the performance of our prompt gamma-ray spectroscopy detector prototype using tissue-mimicking and porcine samples. Approach. Measurements were performed in water, four tissue-mimicking samples (spongiosa, muscle, adipose tissue, and cortical bone), and two porcine samples (liver and brain). A dose of 0.9 Gy was delivered to a target at a depth of 12.5–17.5 cm. Multi-layer ionization chamber measurements were performed to determine stopping power ratios relative to water and ground truth proton ranges. Ground truth elemental compositions were determined using combustion analysis. Proton ranges and elemental compositions measured using prompt gamma-ray spectroscopy were compared to the ground truth. Main results. For all samples, the mean measured range over all pencil-beam spots differed from the ground truth by less than 1.2 mm. The mean standard deviation was 0.9 mm (range: 0.4–1.6 mm). The mean difference between ground truth and measured elemental compositions was 0.06 (range: 0.00 to 0.12 ). Significance. We verified the performance of our prompt gamma-ray spectroscopy detector prototype for proton range verification using tissue-mimicking and porcine samples. Measured proton ranges and elemental sample compositions were in good agreement with the ground truth. These measurements confirm the system’s reliability for a variety of tissues and bridge the gap between previously-reported experiments and ongoing in vivo patient measurements.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have