Abstract

Artificial vitreous humor holds immense potential for use in in vitro intravitreal drug delivery assays. In this study, we investigated rheological properties and drug or nanoparticle migration in hyaluronic acid (HA) – agar based hydrogels and compared these characteristics with bovine vitreous humor. Gel compositions identified in literature containing HA (0.7–5.0 mg/ml) and agar (0.95–4.0 mg/ml) were classified as either high (VH), medium (VM) or low (VL) polymer load. Viscoelastic behavior was evaluated using oscillatory rheology, and migration of differently sized and charged polystyrene nanoparticles (NPs) through the different gels was determined via multiple particle tracking. Comparable rheological behaviour was observed between VL and bovine vitreous. Tracking evaluations revealed that increasing particle size and gel viscosity slowed NP migration. Additionally, 100 nm anionic NPs migrated slower than neutral NPs in VL and VM, while cationic NPs were immobile in all gels. Finally, distribution and clearance of sodium fluorescein was used to model drug mobility through the gels using a custom-built eye model. Flow and angular movement only influenced drug migration in VL and VM, but not VH. Finally, VL and VM demonstrated to have the most similar sodium fluorescein clearance to that of bovine vitreous humor. Together, these evaluations demonstrate that low viscosity HA-agar gels can be used to approximate nanoparticle and drug migration through biological vitreous humor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.