Abstract

The aim of this study was to validate two new whole-room indirfect calorimeters according to Room Indirect Calorimetry Operating and Reporting Standards (RICORS 1.0). For technical validation, 16 propane combustion tests were performed to determine accuracy and precision of energy expenditure (EE) and ventilation rates of oxygen (VO2 ), carbon dioxide (VCO2 ), and respiratory exchange ratio (VCO2 /VO2 ). For biological validation, eight participants (mean [SD], age 24.1 [2.5] years; BMI 24.3 [3.1]kg/m2 ) underwent four 24-hour protocols under highly standardized conditions: (1) isocaloric sedentary, (2) fasting sedentary, (3) isocaloric active, and (4) fasting active. Reliability (coefficients of variation [CV]) and minimal detectable changes (MDC) were calculated for 24-hour EE, sleeping metabolic rate (SMR), physical activity energy expenditure (PAEE), thermic effect of food (TEF), and macronutrient oxidation rates. Technical validation showed high reliability and recovery rates for VO2 (0.75% and 100.8%, respectively), VCO2 (0.49% and 100.6%), and EE (0.54% and 98.2%). Biological validation revealed CV and MDC for active conditions of 1.4% and 4.3% for 24-hour EE, 1.7% and 5.9% for SMR, and 30.2% and 38.4% for TEF, as well as 5.8% and 10.5% for PAEE, respectively. Mean CV and MDC for macronutrient oxidation rates were 9.9% and 22.9%, respectively. The precision of 24-hour EE and SMR was high, whereas it was lower for PAEE and poor for TEF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.