Abstract

Photoplethysmogram (PPG) performs an important role in alarming atrial fibrillation (AF). While the importance of PPG is emphasized, there is insufficient amount of openly available atrial fibrillation PPG data. We propose a U-net-based generative adversarial network (GAN) which synthesize PPG from paired electrocardiogram (ECG). To measure the performance of the proposed GAN, we compared the generated PPG to reference PPG in terms of morphology similarity and also examined its influence on AF detection classifier performance. First, morphology was compared using two different metrics against the reference signal: percent root mean square difference (PRD) and Pearson correlation coefficient. The mean PRD and Pearson correlation coefficient were 27% and 0.94, respectively. Heart rate variability (HRV) of the reference AF ECG and the generated PPG were compared as well. The p-value of the paired t-test was 0.248, indicating that no significant difference was observed between the two HRV values. Second, to validate the generated AF PPG dataset, four different datasets were prepared combining the generated PPG and real AF PPG. Each dataset was used to optimize a classification model while maintaining the same architecture. A test dataset was prepared to test the performance of each optimized model. Subsequently, these datasets were used to test the hypothesis whether the generated data benefits the training of an AF classifier. Comparing the performance metrics of each optimized model, the training dataset consisting of generated and real AF PPG showed a test accuracy result of 0.962, which was close to that of the dataset consisting only of real AF PPG data at0.961. Furthermore, both models yielded the same F1 score of 0.969. Lastly,using only the generated AF PPG dataset resulted in test accuracy of 0.945, indicating that the trained model was capable of generating valuable AF PPG. Therefore, it can be concluded that the generated AF PPG can be used to augment insufficient data. To summarize, this study proposes a GAN-based method to generate atrial fibrillation PPG that can be used for training atrial fibrillation PPG classification models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.