Abstract

The properties of ultrasonic Lamb waves, such as relatively small attenuation and high sensitivity to structural changes of the object being investigated, allow performing of non-destructive testing of various elongated structures like pipes, cables, etc. Due to the dispersion effect of Lamb waves, a waveform of the received informative signal is usually distorted, elongated and overlapping in the time domain. Therefore, in order to investigate objects using the ultrasonic Lamb waves and to reconstruct the dispersion curves, it is necessary to know the relationship between frequency, phase and group velocities and thickness of the plate. The zero-crossing technique for measurement of phase velocity of Lamb waves (the A0 and S0 modes) has been investigated using modelled dispersed signals and experimental signals obtained for an aluminium plate having thickness of 2 mm. A comparison between two reconstruction methods of Lamb wave phase velocity dispersion curves, namely, the two-dimensional fast Fourier transform (2D-FFT) and zero-crossing technique, along with the theoretical (analytical) dispersion curves is presented. The results indicate that the proposed zero-crossing method is suitable for use in reconstruction of dispersion curves in the regions affected by strong dispersion, especially for the A0 mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call