Abstract
The epithelial Na+ channel (ENaC) is traditionally composed of three subunits, although non-canonical expression has been found in various tissues including the vasculature, brain, lung, and dendritic cells of the immune system. Studies of ENaC structure and function have largely relied on heterologous expression systems, often with epitope-tagged channel subunits. Relevant in vivo physiological studies have used ENaC inhibitors, mice with global or tissue specific knockout of subunits, and anti-ENaC subunit antibodies generated by investigators or by commercial sources. Availability of well-characterized, specific antibodies is imperative as we move forward in understanding the role of ENaC in non-epithelial tissues where expression, subunit organization, and electrophysiological characteristics may differ from epithelial tissues. We report that a commonly used commercial anti-α subunit antibody recognizes an intense non-specific band on mouse whole kidney and lung immunoblots, which migrates adjacent to a less intense, aldosterone-induced full length α-subunit. This antibody localizes to the basolateral membrane of aquaporin 2 negative cells in kidney medulla. We validated antibodies against the β- and γ-subunits from the same commercial source. Our work illustrates the importance of validation studies when using popular, commercially available anti-ENaC antibodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.