Abstract
The paper is devoted to the presentation of validation cases carried out for the models describing the corium behaviour in the “lower plenum” of the reactor vessel implemented in the V2.0 version of the ASTEC integral code, jointly developed by IRSN (France) and GRS (Germany). In the ASTEC architecture, these models are grouped within the single ICARE module and they are all activated in typical accident scenarios. Therefore, it is important to check the validity of each individual model, as long as experiments are available for which a single physical process is involved. The results of ASTEC applications against the following experiments are presented: FARO (corium jet fragmentation), LIVE (heat transfer between a molten pool and the vessel), MASCA (separation and stratification of corium non miscible phases) and OLHF (mechanical failure of the vessel). Compared to the previous ASTEC V1.3 version, the validation matrix is extended. This work allows determining recommended values for some model parameters (e.g. debris particle size in the fragmentation model and criterion for debris bed liquefaction). Almost all the processes governing the corium behaviour, its thermal interaction with the vessel wall and the vessel failure are modelled in ASTEC and these models have been assessed individually with satisfactory results. The main uncertainties appear to be related to the calculation of transient evolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.