Abstract
Non-destructive testing was established over the last decades as an important tool for assessing damages, material characterization and quality assurance in civil engineering. For example, Ground Penetrating Radar (GPR) can be used to scan large areas of concrete structures to determine the spatial position of the reinforcement. With the ultrasonic echo method, the thickness of concrete structures can be easily determined even if a high density of reinforcement is given. Various methods and processes have been developed for the validation of NDT procedures aiming at ensuring the quality of measurements in practical use. The Probability of Detection (POD) for example, is an available method to compare different technical devices with each other quantitatively regarding their performance. With this method, the best suited testing device for a specific inspection task under defined boundary conditions can be selected. By using the Guide to the Expression of Uncertainty in Measurement (GUM), it is possible to quantify the measurement uncertainty of an inspection procedure for a specific task. Another important aspect to improve the acceptance of Non-destructive testing methods is the development of reference specimens. Reference specimens serve for the calibration and further development of NDT methods under realistic conditions in different laboratories under the same conditions. A particular challenge here is the most realistic representation of a damage that can occur at building sites. Possible damages include for example horizontal and vertical cracks or honeycombs in concrete. Such a reference structure was built for the development of a new design of power plant constructions. Comparative studies on the manufacturing of realistic honeycombs and delaminations were carried out in advance on a test specimen. The results of this study are presented here.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.