Abstract

Heat treatments play a critical role in ensuring the safety and preservation of milk, but it can affect its nutritional and sensory properties. The present paper proposes the use of a portable system based on fluorescence spectroscopy as an alternative method for the quantification of four thermal damage markers at once (hydroxymethylfurfural, sulfhydryl groups, ascorbic acid, and riboflavin). The obtained prediction models using autofluorescent compounds (tryptophan, dityrosine, Maillard compounds, and riboflavin), validated with skimmed milk processed under several industrial conditions, granted the development of a portable and/or online system, allowing for the real-time monitoring of thermal damage and control of the heat treatment process. The results of this study will certainly contribute to the development of new process analytical technologies for the dairy industry, enabling quality control and adjustment of the manufacturing process to ensure safe and high-quality products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.