Abstract

Eggs are a highly nutritious food; however, those are also fragile and susceptible to cracks, which can lead to bacterial contamination and economic losses. Traditional methods for detecting cracks, particularly in processed eggs, often fall short due to changes in the eggs' physical properties during processing. This study was aimed at developing a novel device for detecting egg cracks using electric discharge phenomena. The system was designed to apply a high-voltage electric field to the eggs, where sparks were generated at crack locations due to the differences in electrical conductivity between the insulative eggshell and the more conductive inner membrane exposed by the cracks. The detection apparatus consisted of a custom-built high-voltage power supply, flexible electrode pins, and a rotation mechanism to ensure a complete 360-degree inspection of each egg. Numerical simulations were performed to analyze the distribution of the electric field and charge density, confirming the method's validity. The results demonstrated that this system could efficiently detect cracks in both raw and processed eggs, overcoming the limitations of existing detection technologies. The proposed method offers high precision, reliability, and the potential for broader application in the inspection of various poultry products, representing a significant advancement in food safety and quality control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.