Abstract

Simulation training can develop surgical procedural skills in a safe environment. Able to offer high-intensity exposure, simulation is increasingly important as working time for surgeons becomes more protected. Materials used in simulated tendon repair play a critical role in the fidelity and face validity of the model. Although organic materials like porcine tendon are commonly used, non-organic materials offer advantages such as accessibility, reproducibility, cost-effectiveness and ease of use without the need for special licences or facilities. This study aims to establish the face, content and concurrent validity of using a novel silicone material in a simulated tendon repair model. Three tendon models, bathroom silicone sealant, DragonSkin® silicone and organic porcine tendons, were evaluated for concurrent validity through mechanical load to failure testing. Face and content validity were assessed, following participant repair of a DragonSkin® tendon, using a 5-point Likert scale for five clinically relevant parameters. Significant differences in load to failure were observed among bathroom sealant, DragonSkin® and porcine tendon (11.1N, 31.7N and 56.2N; p < 0.001). Participant feedback on the DragonSkin® tendon indicated that it was suitably representative, easy to use and useful for training (agreement rates 58%, 75% and 83%, respectively). However, participants noted that the model did not handle or glide like human tendon (both 8% agreement). DragonSkin® silicone is an adaptable and valid material for simulated tendon repair models. It is low cost, widely available and shows promise as a training tool. Future research will focus on exploring its effectiveness in training settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.