Abstract
Nephrolithiasis is one of the most common diseases in urology. According to the EAU Guidelines, a percutaneous nephrolitholapaxy (PNL) is recommended when treating a kidney stone >2 cm. Nowadays, PNL is performed even for smaller stones (<1 cm) using miniaturized instruments. The most challenging part of any PNL is the puncture of the planned site. PNL-novice surgeons need to practice this step in a safe environment with an ideal training model. We developed and evaluated a new, easy to produce, in vitro model for the training of the freehand puncture of the kidney. Porcine kidneys with ureters were embedded in ballistic gel. Food coloring and preservative agent were added. We used the standard imaging modalities of X-ray and ultrasound to validate the training model. An additional new technique, the iPAD-guided puncture, was evaluated. Five novices and three experts conducted 12 punctures for each imaging technique. Puncture time, radiation dose, and number of attempts to a successful puncture were measured. Mann-Whitney-U, Kruskal-Wallis, and U-Tests were used for statistical analyses. The sonography-guided puncture is slightly but not significantly faster than the fluoroscopy-guided puncture and the iPAD-assisted puncture. Similarly, the most experienced surgeon's time for a successful puncture was slightly less than that of the residents, and the experienced surgeons needed the least attempts to perform a successful puncture. In terms of radiation exposure, the residents had a significant reduction of radiation exposure compared to the experienced surgeons. The newly developed ballistic gel kidney-puncture model is a good training tool for a variety of kidney-puncture techniques, with good content, construct, and face validity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have