Abstract

Optimising antifungal treatment requires the fast and species-specific identification of yeast isolates. We evaluated a modified protocol for the rapid identification of clinical yeast isolates using matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) technology. First, we evaluated a simplified extraction procedure using 54 clinical yeast isolates. Second, we validated a new protocol with this simplified extraction procedure and lower identification threshold by analysing 167 isolates with either MALDI-TOF or conventional identification techniques. MALDI-TOF analysis with both the standard and short extraction procedure yielded identical identification results, although the log-scores were lower with the latter. With the modified protocol, 163/167 (97.6%) isolates showed a correct identification as compared to conventional identification techniques. A total of 135 out of the 163 (82.8%) correct identifications showed log-scores above 1.7, which we considered as the minimum log-score for secure species identification. The rapid identification of clinical yeast isolates is crucial in patient management. The MALDI-TOF technique using a short extraction procedure can be an alternative for the labourious standard procedure, although the log-scores will be lower. The identification of clinical yeast isolates with the modified protocol is a practical and accurate alternative for conventional identification techniques. If the isolate shows a log-score below 1.7, the standard extraction procedure should be used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.